Renoprotective Effects of Metformin are Independent of Organic Cation Transporters 1 & 2 and AMP-activated Protein Kinase in the Kidney

نویسندگان

  • Michael Christensen
  • Jonas B. Jensen
  • Steen Jakobsen
  • Niels Jessen
  • Jørgen Frøkiær
  • Bruce E. Kemp
  • Allison L. Marciszyn
  • Hui Li
  • Núria M. Pastor-Soler
  • Kenneth R. Hallows
  • Rikke Nørregaard
چکیده

The type-2 diabetes drug metformin has proven to have protective effects in several renal disease models. Here, we investigated the protective effects in a 3-day unilateral ureteral obstruction (3dUUO) mouse model. Compared with controls, ureteral obstructed animals displayed increased tubular damage and inflammation. Metformin treatment attenuated inflammation, increased the anti-oxidative response and decreased tubular damage. Hepatic metformin uptake depends on the expression of organic cation transporters (OCTs). To test whether the effects of metformin in the kidney are dependent on these transporters, we tested metformin treatment in OCT1/2-/- mice. Even though exposure of metformin in the kidney was severely decreased in OCT1/2-/- mice when evaluated with [11C]-Metformin and PET/MRI, we found that the protective effects of metformin were OCT1/2 independent when tested in this model. AMP-activated protein kinase (AMPK) has been suggested as a key mediator of the effects of metformin. When using an AMPK-β1 KO mouse model, the protective effects of metformin still occurred in the 3dUUO model. In conclusion, these results show that metformin has a beneficial effect in early stages of renal disease induced by 3dUUO. Furthermore, these effects appear to be independent of the expression of OCT1/2 and AMPK-β1, the most abundant AMPK-β isoform in the kidney.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comprehensive approach to investigate the contradictory effects of metformin therapy in cerebral ischemic injury

Ischemic brain injury involves a complex sequence of excitetoxic and oxidative events. Metformin is proposed as one of the potential candidates for returning the body to its basic homeostasis in ischemic situations. Metformin can either protect or damage cells by activating AMP-activated protein kinase (AMPK) and its downstream factors so, it has a dual role in the cerebral ischemia context, bu...

متن کامل

Interactions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins.

The drug-drug interaction (DDI) potential of tyrosine kinase inhibitors (TKI) as interacting drugs via transporter inhibition has not been fully assessed. Here, we estimated the half maximal inhibitory concentration (IC(50)) values for 8 small-molecule TKIs (imatinib, dasatinib, nilotinib, gefitinib, erlotinib, sunitinib, lapatinib, and sorafenib) on [(14)C]metformin transport by human organic ...

متن کامل

Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin.

OBJECTIVES The goals of this study were to determine the role of organic cation transporter 3 (OCT3) in the pharmacological action of metformin and to identify and functionally characterize genetic variants of OCT3 with respect to the uptake of metformin and monoamines. METHODS For pharmacological studies, we evaluated metformin-induced activation of AMP-activated protein kinase, a molecular ...

متن کامل

The Effect of Eight Weeks Aerobic and Resistance Training on AMP-Activated Protein Kinase (AMPK) Gene Expression in Soleus Muscle and Insulin Resistance of STZ-Induced Diabetic Rat

Background: AMPK regulation is one of biggest target in T2D and metabolic syndrome research. Therefore, the present study is aimed to investigate The effect of 8 weeks aerobic and Resistance training on AMP-activated protein kinase (AMPK) gene expression in soleus muscle and insulin resistance of STZ-induced diabetic rat. Methods: The research method of present study was experimental. For this...

متن کامل

The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin.

Organic cation transporters (OCTs) can mediate metformin transmembrane transport. We explored metformin pharmacokinetics in relation to genetic variations in OCT1, OCT2, OCT3, OCTN1, and MATE1 in 103 healthy male Caucasians. Renal clearance varied 3.8-fold and was significantly dependent on creatinine clearance (r(2) = 0.42, P < 0.0001), age (r(2) = 0.09, P = 0.002), and OCT1 polymorphisms. Car...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016